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Overview

● GPU motivation

● Status of the “QUDA” library

● Strategies and performance

● Single-GPU / general

● Multi-GPU 

● Outlook: Adaptive geometric multigrid on GPUs
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Graphics processing units (GPUs)

● Video games are driving a multi-billion dollar market for 
graphics hardware.

(Jon Peddle Research)
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GPU computing is leveraging 
commodity parts, as has long 
been the case for conventional 
microprocessors.
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Graphics processing units (GPUs)

● We're fortunate that computer graphics is an intrinsically 
data-parallel problem, like many scientific applications.

● The trend has been toward greater programmability, away 
from special-purpose hardware.
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GPUs for HPC

● It's now fair to say that GPUs are mainstream in high-
performance computing.
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GPUs on the Top 500

● In the latest “Top 500” list (June 2011), three of the top five 
machines feature GPUs.

● But note that rank is determined by the LINPACK benchmark.  For 
nearly all applications, leveraging so many GPUs in parallel is non-trivial.
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A tale of two processors

Intel Xeon X5690

6 cores (each with 4-wide SSE unit)

1.17 billion transistors

Shared L3 Cache: 12 MB

L1+L2: 6 x (320 KB) = 1920 KB

166 Gflops (SP)

32 GB/s memory bandwidth

up to 288 GB (96 GB is realistic)

NVIDIA GeForce GTX 480

480 cores

3.0 billion transistors

Shared L2 Cache: 768 KB

L1+SM+Reg: 15 x 192 KB = 2880 KB

1345 Gflops (SP)

177 GB/s memory bandwidth

1.5 GB (up to 6 GB in Tesla variant)

“Gulftown” “Fermi”
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Programming GPUs

● These days, GPUs are generally programmed by writing 
functions (“kernels”) to be run on the GPU in C-based 
languages (CUDA C/C++ or OpenCL).  A commercial fortran 
compiler and layers supporting other languages (e.g., 
Python, Java) are also available.

● Kernels are executed in parallel, with up to thousands of 
threads resident at once.
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Steps in a lattice calculation

1. Generate an ensemble of gauge field configurations,

2. Compute quark propagators in these fixed backgrounds by 
solving the Dirac equation for various right-hand sides.

or “Ax=b”
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Configuration generation

● Markov process (sequential)

● Requires > O(10 Tflops) = BlueGene/P, Cray XT5, etc.

“Intrepid” - Argonne Leadership Computing Facility “Jaguar” - Oak Ridge Leadership Computing Facility
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Computing propagators

● This “analysis” stage is suitable for capacity-
type machines but accounts for as many as 
half the cycles in modern calculations.

● Each job requires tens of cluster nodes . . .

(Clusters dedicated to lattice QCD at Fermilab and Jefferson Lab)

Ax=b



Ron Babich (BU)  –  Lattice Meets Experiment 2011 – October 15, 2011 13

Computing propagators

● . . . or a handful of GPUs.

● For smaller lattices, even a single GPU might suffice (state of 
the art in 2007-2009).

● For more typical problems, this analysis stage requires O(10) 
GPUs (presented at SC'10 last year).

● Competing with capability machines for gauge generation 
will require the use of O(100) GPUs in parallel (this talk).
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Krylov solvers

● (Conjugate gradient, BiCGstab, and friends)

● Search for solution to Ax=b in the subspace spanned by    
{b, Ab, A2b, ...}

● Upshot:

● We need fast code to apply A to an arbitrary vector

● ... as well as fast routines for vector addition, inner 
products, etc. (home-grown “BLAS”)                                    
    

● QUDA: A library for lattice QCD on GPUs

● http://lattice.github.com/quda
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QUDA Overview

● “QCD on CUDA” – developed in CUDA C/C++.

● Provides optimized solvers and other routines for the 
following fermion actions:

● Wilson and clover-improved Wilson

● Twisted mass

● Improved staggered (asqtad/HISQ)

● Domain wall

● Details, mailing list, and source code repository available 
here: http://lattice.github.com/quda

● Chroma can be built to use the Wilson/clover code with a 
simple configure flag, likewise for MILC and asqtad/HISQ.

● Straightforward to call directly (e.g., alongside QDP/C)

http://lattice.github.com/quda
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QUDA Capabilities

● CG and BiCGstab solvers for all actions.

● Wilson, clover, twisted-mass, and improved staggered code 
includes:

● Multi-GPU support, using either MPI or QMP for 
communication.

● Multi-shift CG solver.

● Domain-decomposed GCR solver (not proven yet 
for staggered).

● Improved staggered code also includes:

● Asqtad link fattening (HISQ in progress).

● Asqtad fermion force (HISQ in progress).

● Gauge force for 1-loop improved Symanzik action.
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Roadmap / Wish List

● Multi-GPU support for domain wall (in progress)

● Support for naïve staggered

● Force terms for actions other than asqtad/HISQ

● Support for a broader range of gauge groups and 
representations

● Volunteers needed!

● Note: The most recent official release (v0.3.2, January 2011) 
is now pretty stale.  QUDA 0.4.0 is coming “any day now.”

● In the meantime, use the latest development version from 
the repository: http://github.com/lattice/quda

http://github.com/lattice/quda
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A tale of two processors (reprise)

Intel Xeon X5690

6 cores (each with 4-wide SSE unit)

1.17 billion transistors

Shared L3 Cache: 12 MB

L1+L2: 6 x (320 KB) = 1920 KB

166 Gflops (SP)

32 GB/s memory bandwidth

up to 288 GB (96 GB is realistic)

NVIDIA GeForce GTX 480

480 cores

3.0 billion transistors

Shared L2 Cache: 768 KB

L1+SM+Reg: 15 x 192 KB = 2880 KB

1345 Gflops (SP)

177 GB/s memory bandwidth

1.5 GB (up to 6 GB in Tesla variant)

“Gulftown” “Fermi”
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Bandwidth constraints

166 Gflops (SP)

32 GB/s memory bandwidth

1345 Gflops (SP)

177 GB/s memory bandwidth

● Per lattice site, applying the Wilson-clover 
operator (for example) involves 1824 flops while 
reading/writing 432 floats, corresponding to a 
byte/flop ratio of 0.95 in single precision or 
1.90 in double.

● The basic linear algebra routines are even more 
memory-bound.

● We're entirely constrained by memory bandwidth. 
On the GPU, flops are virtually free.
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GPU memory hierarchy

(GeForce GTX 480)
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Tricks to reduce memory traffic

● Reconstruct SU(3) matrices from 8 or 12 real numbers on the 
fly, e.g.,

● Choose a gamma basis with 4 diagonal.

● Fix to the temporal gauge (setting gauge                             
links in the t-direction to the identity).

similarity
transforms 
on D

P. De Forcrand, D. Lellouch and C. Roiesnel, “Optimizing a lattice 
QCD simulation program,” J. Comput. Phys. 59, 324 (1985).
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Mixed precision with reliable updates

● Using a mixed-precision solver incorporating “reliable 
updates” (Clark et al., arXiv:0911.3191) with half precision  
greatly reduces time-to-solution while maintaining double 
precision accuracy.
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Performance results

● Results are for the even/odd preconditioned clover-improved 
Wilson matrix-vector product,

● Runs were done on a single GeForce GTX 480.

● For reference, a standard dual-socket node with recent 
(Westmere) quad-core Xeons would sustain around 20 
Gflops in single precision for a well-optimized Wilson-clover 
Dslash.

● We'll compare results for double, single, and half precision.  
In this case, half is a 16-bit quasi-fixed-point implementation, 
implemented via normalized texture reads.

● The spatial volume is held fixed at 243.
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Matrix-vector performance

● Single and half performance are about 2.8x and 4.9x higher 
than double, respectively.
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Multi-GPU motivation

● GPU memory: For throughput jobs (e.g., computing 
propagators), it suffices to use the smallest number of GPUs 
that will fit the job, but often one GPU isn't enough.

● Host memory: It's generally most cost-effective to put more 
than one GPU in a node.  These can be used in an 
embarrassingly parallel fashion (by running multiple 
separate jobs), but then host memory becomes a constraint.

● Capability: We'd like to broaden the range of problems to 
which GPUs are applicable (e.g., gauge generation).



Ron Babich (BU)  –  Lattice Meets Experiment 2011 – October 15, 2011 26

GPUs are in serious use for “analysis”

~ 500 GPUs dedicated   
    to LQCD at Jefferson  
    Lab
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Can they also make a dent here? 

“Jaguar” - Oak Ridge Leadership Computing Facility

“Intrepid” - Argonne Leadership 
                  Computing Facility

QPACE – NIC Juelich
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Challenges to scaling up

● GPU-to-host and 
inter-node 
bandwidth

● GPU-to-host and 
inter-node  
latency

~ 3+3 GB/s
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Multi-GPU motivation

● GPU memory: For throughput jobs (e.g., computing 
propagators), it suffices to use the smallest number of GPUs 
that will fit the job, but often one GPU isn't enough.

● Host memory: It's generally most cost-effective to put more 
than one GPU in a node.  These can be used in an 
embarrassingly parallel fashion (by running multiple 
separate jobs), but then host memory becomes a constraint.

● Capability: We'd like to broaden the range of problems to 
which GPUs are applicable (e.g., gauge generation).
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Parallelizing the Dslash

● For illustration, consider a 2D 
problem with a 42 local volume.

● Because we employ even/odd 
(red/black) preconditioning, only 
half the sites will be updated per 
“Dslash” operation.

● We'll take these to be the purplepurple 
sites.
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Parallelizing the Dslash

Step 1:

● Gather boundary sites into 
contiguous buffers to be shipped 
off to neighboring GPUs, one 
direction at a time.

● As part of the gather kernel, a 
“spin projection” step reduces the 
amount of data that must be 
transferred from 24 to 12 floats, at 
the cost of only 12 adds.

PPP

PPP

P

P
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Parallelizing the Dslash

Step 1:

● Gather boundary sites into 
contiguous buffers to be shipped 
off to neighboring GPUs, one 
direction at a time.

● As part of the gather kernel, a 
“spin projection” step reduces the 
amount of data that must be 
transferred from 24 to 12 floats, at 
the cost of only 12 adds.

P P
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Parallelizing the Dslash

Step 2:

● An “interior kernel” updates all 
local sites to the extent possible.  
Sites along the boundary receive 
contributions from local neighbors.
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Parallelizing the Dslash

Step 2:

● An “interior kernel” updates all 
local sites to the extent possible.  
Sites along the boundary receive 
contributions from local neighbors.

● To finish off a site, we must apply 
the clover term (local 12x12 
complex matrix-vector multiply).  
This is done for a given site once 
contributions from all neighbors 
have been accumulated.
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Parallelizing the Dslash

Step 3:

● Boundary sites are updated by a 
series of kernels (one per 
direction).

● Note that corner sites (and 
edges/faces in higher dimensions) 
introduce a data dependency 
between kernels, which must 
therefore execute sequentially.

● A given boundary kernel must also 
wait for it's “ghost zone” to arrive.
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Parallelizing the Dslash

Step 3:

● Boundary sites are updated by a 
series of kernels (one per 
direction).

● Note that corner sites (and 
edges/faces in higher dimensions) 
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between kernels, which must 
therefore execute sequentially.
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Parallelizing the Dslash

Step 3:

● Boundary sites are updated by a 
series of kernels (one per 
direction).

● Note that corner sites (and 
edges/faces in higher dimensions) 
introduce a data dependency 
between kernels, which must 
therefore execute sequentially.

● A given boundary kernel must also 
wait for it's “ghost zone” to arrive.Done!Done!
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Overlapping communications
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Hardware

● Out test bed is the “Edge” cluster at Lawrence Livermore 
National Lab:

● 206 nodes available for batch jobs, interconnected by 
QDR infiniband

● 2 Intel Xeon X5660 processors per node (6-core 
Westmere @ 2.8 GHz)

● 2 Tesla M2050 cards per node, sharing 16 PCI-E lanes 
to the IOH via a switch

● ECC enabled on the Teslas

● CUDA 4.0 RC1 (but no GPU-Direct)

● Driver version 270.27

● Pre-release version of QUDA 0.4, interfaced to Chroma 
(an application suite for lattice QCD).
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Matrix-vector performance results

V = 32V = 3233 x 256 x 256
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Solver performance

(BiCGstab, mixed single/half with reliable updates)

Comms-boundComms-bound

V = 32V = 3233 x 256 x 256
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Building a scalable solver

● We need a smarter algorithm, one that takes advantage of 
the ample compute throughput available while minimizing 
communication.

● This led us to adopt a domain-decomposition approach by 
applying an additive Schwartz preconditioner to GCR.

● Most of the work is in the 
preconditioner, which solves a 
linear system (to low accuracy via 
MR) but with Dirichlet boundary 
conditions between GPUs.  In 
other words, communication is 
simply turned off in the Dslash.

● Furthermore, this task is well-
suited to reduced (e.g., half) 
precision.
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Building a scalable solver

● We need a smarter algorithm, one that takes advantage of 
the ample compute throughput available while minimizing 
communication.

● This led us to adopt a domain-decomposition approach by 
applying an additive Schwartz preconditioner to GCR.

● Most of the work is in the 
preconditioner, which solves a 
linear system (to low accuracy via 
MR) but with Dirichlet boundary 
conditions between GPUs.  In 
other words, communication is 
simply turned off in the Dslash.

● Furthermore, this task is well-
suited to reduced (e.g., half) 
precision. Done!Done!
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Solver performance

V = 32V = 3233 x 256 x 256
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Solver time to solution

V = 32V = 3233 x 256 x 256
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Comparisons

● For a fair comparison, time to solution is the relevant 
quantity, since algorithms differ in the total number of 
operations required to reach a given level of accuracy.

● We can define an “effective Tflops” number for GCR-DD, 
however, in terms of the level of performance that pure 
single-precision BiCGstab would have to achieve to obtain 
the same time to solution.

● This yields an effective 9.95 Tflops for GCR-DD on 128 
GPUs and 11.5 Tflops on 256 GPUs.

● This allows us to make rough comparisons to comparable 
runs on various capability machines:

● Cray XT4 (Jaguar at Oak Ridge LCF)

● Cray XT5 (Jaguar PF at Oak Ridge LCF)

● BlueGene/P (Intrepid at Argonne LCF)
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Comparisons

V = 32V = 3233 x 256 x 256
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Multigrid

● A multigrid solver (or preconditioner) works by treating slow-
to-converge modes on a succession of coarser grids.

Figure: Rob Falgout (LLNL)
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Adaptive geometric multigrid for QCD

● First attempts to apply multigrid to lattice QCD, beginning in 
the early 90's, mostly came up short.

● Success finally achieved in the last few years by a 
collaboration of physicists and applied mathematicians.

● J. Brannick, R. Brower, M. Clark, J. Osborn, C. Rebbi, arXiv:0707.4018

● R.B., J. Brannick, R. Brower, M. Clark, et al., arXiv:1005:3043

● J. Osborn, R.B., J. Brannick, R. Brower, M. Clark, S. Cohen, C. Rebbi, 
arXiv:1011.2775 

● “Secret sauce” lies in the construction of the restriction and 
prolongation operators that take vectors between grids.

● Optimized code developed for conventional clusters, Blue 
Genes, etc. (J. Osborn et al.)

● Results on 1024 cores of BG/P . . .
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Multigrid results (323 x 256)

1.7x

12.2x

19.8x

(Osborn et al.)
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Outlook: Multigrid on GPUs

● GPUs clearly win for many workloads in lattice QCD (5-10x 
improvement in price/performance)

● . . . but multigrid on traditional clusters is competitive (up to 
20x over standard solvers at light masses).

● Next step: MG2: Multi-GPU multigrid (up to 100x ?).

Multi-GPU  Multi-GPU  x x   MultigridMultigrid    =  =  ??
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Outlook: Multigrid on GPUs

● GPUs clearly win for many workloads in lattice QCD (5-10x 
improvement in price/performance)

● . . . but multigrid on traditional clusters is competitive (up to 
20x over standard solvers at light masses).

● Next step: MG2: Multi-GPU multigrid (up to 100x ?).

● Scaling multigrid to hundreds of GPUs will be a 
challenge, and employing multi-scale methods in 
gauge generation is an active research topic.

● but multigrid solvers will almost certainly work well 
on tens of GPUs (at least for Wilson/clover).

● What would you do differently if propagators 
were 50x cheaper to compute?
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Outlook: Big machines are on the way...

Source: http://www.olcf.ornl.gov/wp-content/uploads/2011/07/TitanWebinar.pdf
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Outlook: Big machines are on the way...
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Bonus slides
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Mixed precision with reliable updates

● In the usual method of iterative refinement (or “defect 
correction”), the Krylov subspace is thrown away at every 
restart:

● An alternative is “reliable updates,” originally introduced to 
combat residual drift caused by the erratic convergence of 
BiCGstab: G. L. G. Sleijpen, and H. A. van der Vorst, “Reliable updated 
residuals in hybrid Bi-CG methods,” Computing 56, 141-164 (1996).
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Mixed precision with reliable updates

● New (?) idea is to apply this approach to mixed precision.         
                                            (Clark et al., arXiv:0911.3191)

● Reliable updates seems to win handily at light quark masses (and is 
no worse than iterative refinement at heavy masses).

•   ^ denotes reduced precision.
•      is a parameter determining     
    the frequency of updates.
•            denotes the maximum       
    iterated residual since the last    
    update.
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Multigrid: Total cost (323 x 256)

~120 solves
~12 solves

~6 solves

(Osborn et al.)


